查看原文
其他

如何用 Java 几分钟处理完 30 亿个数据?

SpringForAll 2022-10-20
关注我,回复关键字“spring”
免费领取Spring学习资料

1. 场景说明


现有一个 10G 文件的数据,里面包含了 18-70 之间的整数,分别表示 18-70 岁的人群数量统计。假设年龄范围分布均匀,分别表示系统中所有用户的年龄数,找出重复次数最多的那个数,现有一台内存为 4G、2 核 CPU 的电脑,请写一个算法实现。


23,31,42,19,60,30,36,........


2. 模拟数据

Java 中一个整数占 4 个字节,模拟 10G 为 30 亿左右个数据, 采用追加模式写入 10G 数据到硬盘里。

每 100 万个记录写一行,大概 4M 一行,10G 大概 2500 行数据。


package bigdata; import java.io.*;import java.util.Random; /** * @Desc: * @Author: bingbing * @Date: 2022/5/4 0004 19:05 */public class GenerateData { private static Random random = new Random();  public static int generateRandomData(int start, int end) { return random.nextInt(end - start + 1) + start; }  /** * 产生10G的 1-1000的数据在D盘 */ public void generateData() throws IOException { File file = new File("D:\\ User.dat"); if (!file.exists()) { try { file.createNewFile(); } catch (IOException e) { e.printStackTrace(); } } int start = 18; int end = 70; long startTime = System.currentTimeMillis(); BufferedWriter bos = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file, true))); for (long i = 1; i < Integer.MAX_VALUE * 1.7; i++) { String data = generateRandomData(start, end) + ","; bos.write(data); // 每100万条记录成一行,100万条数据大概4M if (i % 1000000 == 0) { bos.write("\n"); } } System.out.println("写入完成! 共花费时间:" + (System.currentTimeMillis() - startTime) / 1000 + " s"); bos.close(); }  public static void main(String[] args) { GenerateData generateData = new GenerateData(); try { generateData.generateData(); } catch (IOException e) { e.printStackTrace();        } }}

上述代码调整参数执行 2 次,凑 10G 数据在 D 盘 User.dat 文件里:



准备好 10G 数据后,接着写如何处理这些数据。

3. 场景分析

10G 的数据比当前拥有的运行内存大的多,不能全量加载到内存中读取。如果采用全量加载,那么内存会直接爆掉,只能按行读取。Java 中的 bufferedReader 的 readLine() 按行读取文件里的内容。

4. 读取数据

首先,我们写一个方法单线程读完这 30 亿数据需要多少时间,每读 100 行打印一次:


private static void readData() throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(FILE_NAME), "utf-8")); String line; long start = System.currentTimeMillis(); int count = 1; while ((line = br.readLine()) != null) {        // 按行读取 if (count % 100 == 0) { System.out.println("读取100行,总耗时间: " + (System.currentTimeMillis() - start) / 1000 + " s"); System.gc(); } count++; } running = false;    br.close();}


按行读完 10G 的数据大概 20 秒,基本每 100 行,1 亿多数据花 1 秒,速度还挺快。




5. 处理数据


5.1 思路一

通过单线程处理,初始化一个 countMap,key 为年龄,value 为出现的次数。将每行读取到的数据按照 "," 进行分割,然后获取到的每一项进行保存到 countMap 里。如果存在,那么值 key 的 value+1。


for (int i = start; i <= end; i++) { try { File subFile = new File(dir + "\\" + i + ".dat"); if (!file.exists()) { subFile.createNewFile(); } countMap.computeIfAbsent(i + "", integer -> new AtomicInteger(0)); } catch (FileNotFoundException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); }}


单线程读取并统计 countMap:


publicstatic void splitLine(String lineData) { String[] arr = lineData.split(","); for (String str : arr) { if (StringUtils.isEmpty(str)) { continue; } countMap.computeIfAbsent(str, s -> new AtomicInteger(0)).getAndIncrement(); }}

通过比较找出年龄数最多的年龄并打印出来:


private static void findMostAge() { Integer targetValue = 0; String targetKey = null; Iterator<Map.Entry<String, AtomicInteger>> entrySetIterator = countMap.entrySet().iterator(); while (entrySetIterator.hasNext()) { Map.Entry<String, AtomicInteger> entry = entrySetIterator.next(); Integer value = entry.getValue().get(); String key = entry.getKey(); if (value > targetValue) { targetValue = value; targetKey = key; } } System.out.println("数量最多的年龄为:" + targetKey + "数量为:" + targetValue);}


测试结果

总共花了 3 分钟读取完并统计完所有数据。



内存消耗为 2G-2.5G,CPU 利用率太低,只向上浮动了 20%-25% 之间。




要想提高 CPU 利用率,那么可以使用多线程去处理。

下面我们使用多线程去解决这个 CPU 利用率低的问题。


5.2 思路二:分治法

使用多线程去消费读取到的数据。采用生产者、消费者模式去消费数据。


因为在读取的时候是比较快的,单线程的数据处理能力比较差。因此思路一的性能阻塞在取数据的一方且又是同步操作,导致整个链路的性能会变的很差。


所谓分治法就是分而治之,也就是说将海量数据分割处理。根据 CPU 的能力初始化 n 个线程,每一个线程去消费一个队列,这样线程在消费的时候不会出现抢占队列的问题。同时为了保证线程安全和生产者消费者模式的完整,采用阻塞队列。Java 中提供了 LinkedBlockingQueue 就是一个阻塞队列。



初始化阻塞队列

使用 LinkedList 创建一个阻塞队列列表:


private static List<LinkedBlockingQueue<String>> blockQueueLists = new LinkedList<>();

在 static 块里初始化阻塞队列的数量和单个阻塞队列的容量为 256。


上面讲到了 30 亿数据大概 2500 行,按行塞到队列里。20 个队列,那么每个队列 125 个,因此可以容量可以设计为 256 即可。


//每个队列容量为256for (int i = 0; i < threadNums; i++) { blockQueueLists.add(new LinkedBlockingQueue<>(256));}

生产者

为了实现负载的功能,首先定义一个 count 计数器,用来记录行数:


private static AtomicLong count = new AtomicLong(0);

按照行数来计算队列的下标 long index=count.get()%threadNums。 


下面算法就实现了对队列列表中的队列进行轮询的投放:


static class SplitData {    public static void splitLine(String lineData) { String[] arr = lineData.split("\n"); for (String str : arr) { if (StringUtils.isEmpty(str)) { continue; } long index = count.get() % threadNums; try { // 如果满了就阻塞 blockQueueLists.get((int) index).put(str); } catch (InterruptedException e) { e.printStackTrace(); }            count.getAndIncrement(); } }

消费者


1) 队列线程私有化

消费方在启动线程的时候根据 index 去获取到指定的队列,这样就实现了队列的线程私有化。


private static void startConsumer() throws FileNotFoundException, UnsupportedEncodingException { //如果共用一个队列,那么线程不宜过多,容易出现抢占现象 System.out.println("开始消费..."); for (int i = 0; i < threadNums; i++) { final int index = i; // 每一个线程负责一个 queue,这样不会出现线程抢占队列的情况。 new Thread(() -> { while (consumerRunning) { startConsumer = true; try { String str = blockQueueLists.get(index).take(); countNum(str); } catch (InterruptedException e) { e.printStackTrace(); } } }).start();        }}

2) 多子线程分割字符串


由于从队列中多到的字符串非常的庞大,如果又是用单线程调用 split(",") 去分割,那么性能同样会阻塞在这个地方。


// 按照 arr的大小,运用多线程分割字符串private static void countNum(String str) { int[] arr = new int[2];    arr[1] = str.length() / 3; for (int i = 0; i < 3; i++) {        final String innerStr = SplitData.splitStr(str, arr); new Thread(() -> { String[] strArray = innerStr.split(","); for (String s : strArray) { countMap.computeIfAbsent(s, s1 -> new AtomicInteger(0)).getAndIncrement(); } }).start(); }}


3) 分割字符串算法

分割时从 0 开始,按照等分的原则,将字符串 n 等份,每一个线程分到一份。

用一个 arr 数组的 arr[0] 记录每次的分割开始位置。arr[1] 记录每次分割的结束位置,如果遇到的开始的字符不为 "," 那么就 startIndex-1。如果结束的位置不为 "," 那么将 endIndex 向后移一位。

如果 endIndex 超过了字符串的最大长度,那么就把最后一个字符赋值给 arr[1]。


/** * 按照 x坐标 来分割 字符串,如果切到的字符不为“,”, 那么把坐标向前或者向后移动一位。 * * @param line * @param arr 存放x1,x2坐标 * @return */public static String splitStr(String line, int[] arr) { int startIndex = arr[0]; int endIndex = arr[1]; char start = line.charAt(startIndex); char end = line.charAt(endIndex); if ((startIndex == 0 || start == ',') && end == ',') { arr[0] = endIndex + 1; arr[1] = arr[0] + line.length() / 3; if (arr[1] >= line.length()) { arr[1] = line.length() - 1; } return line.substring(startIndex, endIndex); }
if (startIndex != 0 && start != ',') { startIndex = startIndex - 1; }
if (end != ',') { endIndex = endIndex + 1; }
arr[0] = startIndex; arr[1] = endIndex; if (arr[1] >= line.length()) { arr[1] = line.length() - 1; } return splitStr(line, arr);}

测试结果


内存和 CPU 初始占用大小:



启动后,运行时内存稳定在 11.7G,CPU 稳定利用在 90% 以上。



总耗时由 180 秒缩减到 103 秒,效率提升 75%,得到的结果也与单线程处理的一致。



6. 遇到的问题


如果在运行了的时候,发现 GC 突然罢工不工作了,有可能是 JVM 的堆中存在的垃圾太多,没回收导致内存的突增。



解决方法


在读取一定数量后,可以让主线程暂停几秒,手动调用 GC。


提示: 本 demo 的线程创建都是手动创建的,实际开发中使用的是线程池。


转自:Dream_it_possible!,

链接:blog.csdn.net/qq_33036061/article/details/124568689



END



记一次通过 Arthas 定位解决 Spring Boot 中内嵌 Tomcat 的 Bug 问题
为什么要写单元测试?如何写单元测试?
Spring Boot 实现 MySQL 读写分离技术
为什么你开发的网页不应该大于 14KB?

关注后端面试那些事,回复【2022面经】

获取最新大厂Java面经


最后重要提示:高质量的技术交流群,限时免费开放,今年抱团最重要。想进群的,关注SpringForAll社区,回复关键词:加群,拉你进群。

点击这里领取2022大厂面经

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存